Failure Mechanism of EB-PVD Thermal Barrier Coatings under the Synergistic Effect of Thermal Shock and CMAS Corrosion

نویسندگان

چکیده

Thermal barrier coatings (TBCs) suffer from the thermo-chemo-mechanical coupling action of thermal shock and calcium–magnesium–alumina–silicate (CMAS) corrosion. However, failure mechanism TBCs under synergistic effect CMAS corrosion is still unclear due to a lack an environmental simulator. Herein, 8YSZ ceramic coating deposited on PtAl bond coating/DD419 nickel-based single crystal superalloy substrate using electron beam physical vapor deposition (EB-PVD) method. The achieved in self-developed interaction volume expansion induced by phase transition ZrO2, structural degradation fatigue further increases out-of-plane tensile stress in-plane shear coating, which accelerates initiation propagation surface vertical cracks horizontal cracks. As multiple propagate interface merge with interfacial cracks, spalls substrate.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Erosion, Corrosion and Erosion-Corrosion of EB PVD Thermal Barrier Coatings

Electron beam (EB) physical vapour deposited (PVD) thermal barrier coatings (TBCs) have been used in gas turbine engines for a number of years. The primary mode of failure is attributed to oxidation of the bondcoat and growth of the thermally grown oxide (TGO), the alumina scale that forms on the bondcoat and to which the ceramic top coat adheres. Once the TGO reaches a critical thickness the T...

متن کامل

Residual Stresses of Eb-pvd Thermal Barrier Coatings Exposed to High Temperature

The substrate material was nickel-based superalloy (In738LC), and CoNiCrAlY was pressureless plasma-sprayed on the substrate as the bond coating. As the top coating, zirconia with 4 mol% yttria was electron beam-physical vapor deposited (EB-PVD) on the rotating substrate. The rotation speeds in the EB-PVD process were 5, 10 and 20rpm. The specimens were exposed to 1273K in air atmosphere for 20...

متن کامل

AN INVESTIGATION ON EFFECT OF BOND COAT REPLACEMENT ON HOT CORROSION PROPERTIES OF THERMAL BARRIER COATINGS

In the present study NiCrAlY bond coating layer was produced by electroplating against common atmospheric plasma spraying (APS). Both types of the bond coats were applied on IN738LC base metal then, the YSZ (ZrO2-8% Y2O3) thermal barrier top layer was coated by atmospheric plasma spray technique. Hot corrosion is one of the main destructive factors in thermal barrier coatings (TBCs) which come ...

متن کامل

Failure Mechanisms Investigation in Thermal Barrier Coatings under Isothermal and Non-sothermal Fatigue Loadings using Design of Experiments

In this article, failure and fracture mechanisms in an aluminum alloy (which has been used in diesel internal combustion engines), with and without ceramic thermal barrier coatings, have been investigated under isothermal and non-isothermal fatigue loadings. In this research, the base material is an aluminum-silicon-magnesium alloy and the thermal barrier coating includes a metallic bond coat l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Coatings

سال: 2022

ISSN: ['2079-6412']

DOI: https://doi.org/10.3390/coatings12091290